Packages

object Inverse

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Inverse
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Value Members

  1. implicit def DeriveInverse[F[_], A](implicit derive: Derive[F, Inverse], inverse: Inverse[A]): Inverse[F[A]]

    Derives an Inverse[F[A]] given a Derive[F, Inverse] and an Inverse[A].

  2. implicit def Tuple10Inverse[A, B, C, D, E, F, G, H, I, J](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J]): Inverse[(A, B, C, D, E, F, G, H, I, J)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  3. implicit def Tuple11Inverse[A, B, C, D, E, F, G, H, I, J, K](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K]): Inverse[(A, B, C, D, E, F, G, H, I, J, K)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  4. implicit def Tuple12Inverse[A, B, C, D, E, F, G, H, I, J, K, L](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  5. implicit def Tuple13Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  6. implicit def Tuple14Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  7. implicit def Tuple15Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  8. implicit def Tuple16Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  9. implicit def Tuple17Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  10. implicit def Tuple18Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q], arg17: Inverse[R]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  11. implicit def Tuple19Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q], arg17: Inverse[R], arg18: Inverse[S]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  12. implicit def Tuple20Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q], arg17: Inverse[R], arg18: Inverse[S], arg19: Inverse[T]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  13. implicit def Tuple21Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q], arg17: Inverse[R], arg18: Inverse[S], arg19: Inverse[T], arg20: Inverse[U]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  14. implicit def Tuple22Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q], arg17: Inverse[R], arg18: Inverse[S], arg19: Inverse[T], arg20: Inverse[U], arg21: Inverse[V]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  15. implicit def Tuple2Inverse[A, B](implicit arg0: Inverse[A], arg1: Inverse[B]): Inverse[(A, B)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  16. implicit def Tuple3Inverse[A, B, C](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C]): Inverse[(A, B, C)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  17. implicit def Tuple4Inverse[A, B, C, D](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D]): Inverse[(A, B, C, D)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  18. implicit def Tuple5Inverse[A, B, C, D, E](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E]): Inverse[(A, B, C, D, E)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  19. implicit def Tuple6Inverse[A, B, C, D, E, F](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F]): Inverse[(A, B, C, D, E, F)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  20. implicit def Tuple7Inverse[A, B, C, D, E, F, G](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G]): Inverse[(A, B, C, D, E, F, G)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  21. implicit def Tuple8Inverse[A, B, C, D, E, F, G, H](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H]): Inverse[(A, B, C, D, E, F, G, H)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  22. implicit def Tuple9Inverse[A, B, C, D, E, F, G, H, I](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I]): Inverse[(A, B, C, D, E, F, G, H, I)]

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  23. def apply[A](implicit Inverse: Inverse[A]): Inverse[A]

    Summons an implicit Inverse[A].

  24. def make[A](identity0: A, op: (A, A) => A, inv: (A, A) => A): Inverse[A]

    Constructs an Inverse instance from an associative binary operator, an identity element, and an inverse binary operator.

  25. def makeFrom[A](identity: Identity[A], inverse: (A, A) => A): Inverse[A]

    Constructs an Inverse instance from an identity instance and an inverse function.