Packages

o

zio.prelude

classic

object classic

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. classic
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Type Members

  1. type AbelianGroup[A] = Commutative[A] with Inverse[A]
  2. type Alternative[F[+_]] = Covariant[F] with IdentityBoth[F] with IdentityEither[F]
  3. type Applicative[F[+_]] = Covariant[F] with IdentityBoth[F]
  4. type Apply[F[+_]] = Covariant[F] with AssociativeBoth[F]
  5. type Bifunctor[=>:[+_, +_]] = Bicovariant[=>:]
  6. type BoundedSemilattice[A] = Semilattice[A] with Identity[A]
  7. type Category[=>:[-_, +_]] = IdentityCompose[=>:]
  8. type CommutativeMonoid[A] = Commutative[A] with Identity[A]
  9. type CommutativeSemigroup[A] = Commutative[A]
  10. type Contravariant[F[-_]] = prelude.Contravariant[F]
  11. type ContravariantMonoidal[F[-_]] = Contravariant[F] with IdentityBoth[F]
  12. type ContravariantSemigroupal[F[-_]] = Contravariant[F] with AssociativeBoth[F]
  13. type Decidable[F[-_]] = Contravariant[F] with IdentityBoth[F] with IdentityEither[F]
  14. type Divide[F[-_]] = Contravariant[F] with AssociativeBoth[F]
  15. type Divisible[F[-_]] = Contravariant[F] with IdentityBoth[F]
  16. type FlatMap[F[+_]] = Covariant[F] with AssociativeFlatten[F]
  17. type Functor[F[+_]] = Covariant[F]
  18. type Group[A] = Inverse[A]
  19. type Invariant[F[_]] = prelude.Invariant[F]
  20. type InvariantAlt[F[_]] = Invariant[F] with IdentityBoth[F] with IdentityEither[F]
  21. type InvariantApplicative[F[_]] = Invariant[F] with IdentityBoth[F]
  22. type InvariantMonoidal[F[_]] = Invariant[F] with IdentityBoth[F]
  23. type InvariantSemigroupal[F[_]] = Invariant[F] with AssociativeBoth[F]
  24. type Monad[F[+_]] = Covariant[F] with IdentityFlatten[F]
  25. type Monoid[A] = Identity[A]
  26. type MonoidK[F[_]] = IdentityEither[F]
  27. type Profunctor[=>:[-_, +_]] = Divariant[=>:]
  28. type Semigroup[A] = Associative[A]
  29. type SemigroupK[F[_]] = AssociativeEither[F]
  30. type Semigroupal[F[+_]] = Covariant[F] with AssociativeBoth[F]
  31. type Semilattice[A] = Commutative[A] with Idempotent[A]